

Optimization of dairy herd replacements combining conventional, sexed, and beef semen in mating programs

Valentina Ferrari¹, Maurizio Marusi¹, Mauro Penasa², JT van Kaam¹, Raffaella Finocchiaro¹ and Martino Cassandro^{1,2}

¹ANAFIBJ, ²University of Padova

Special thanks to Maurizio Marusi and Manuel Galleani for their support with tool development.

General introduction

What affects the process of rearing heifers?

- ✓ Rearing costs
- ✓ Number of breeding heifers
- ✓ Cubicles (overcrowding)

- ✓ Milk production
- ✓ Health issues
- ✓ Reproductive efficiency (→ maximize conception rate, favor shorter calving interval, reduce the number of heifers that fail to conceive)

Advancements in A.I.

Heifers: which strategies?

√ How is it possible to define how many heifers are needed?

✓ How to decide which animals to breed with Holstein bull?

Aim

To develop a tool to help dairy farmers identify their annual female replacement needs.

The tool is based on herd performance level and combination of type of semen (conventional, sex-sorted, and beef semen) to optimize the economic outcome.

Web Anafibj Mate

How does this tool work?

- 1) Define the number of heifers that the farm needs.
 - 2) Define the number of animals to breed with Holstein semen.
 - 3) Choose which animals to breed with Holstein semen (using mating programs).

Materials and methods (1/2)

- We developed a tool to let users adapting it to their situations (approach proposed by Genex Cooperative, Ontario, CA, and adjusted to Italian herd and market conditions).
- Simulated case study with input variables:

Variables	Unit	Input value
Cows (lactating and dry)	n	250
Breeding heifers entering the herd	n/yr	100
Annual replacement rate	%	30
Annual herd growth rate target	%	0
Heifers' safety percentage	%	10
Sex ratio (females/males) by semen type	%	47/53 (conventional and beef), 90/10 (sexed)
Calving interval	(mo)	13
Animals not inseminated	%	2
Pregnancy loss	%	8
Stillbirth rate	%	7
Mortality from weaning to first calving	%	5

Semen type
(conventional,
sexed, beef) can be
changed accordingly
to farmer's
utilisation.

Materials and methods (2/2)

Annual dairy replacement needs = result is derived from the number of animals in the herd and the annual turnover rate, adjusted for age at first calving.

Number of heifers yielded per year = result is derived by semen type utilization, calf and heifer mortality, pregnancy losses, and calving interval.

Heifer balance: number of heifers yielded - annual dairy replacement needs.

Animals yielded → used to evaluate the **replacement cost** (RC) per 100 L of milk

 $RC = \frac{cost\ of\ rearing\ replacements - (cull\ cow\ income + income\ from\ male\ calves\ sold)}{cost\ of\ rearing\ replacements}$ income from 100 L of milk sold

cost of rearing replacements: all costs incurred from birth to first calving calculated for all females yielded:

cull cow income: revenue from selling cull cows and heifers;

income from male calves: revenue from selling dairy male calves and calves from beef when beef semen is used

Insert by farmer based on its herd data and/or

FARM REPLACEMENT

iperformances eplacement calculation

Example 1: 100% use of conventional semen

Dairy heifer replacement calculation: replacement cost

AVARAGE DAIRY-BEEF MALE CALVES BODY WEIGHT	50 Kg	AV. DAIRY CONVENTIONAL	[5.00 €/DOSE
AV. DAIRY MALE CALF MARKET VALUE	1.3 €/KG	SEMEN UNIT PRICE	Total A Many
AV. DAIRY-BEEF MALE CALF MARKET VALUE	3.5 €/KG	AV. BEEF SEMEN UNIT PRICE	7.00 €/DOSE
DAYS FROM BIRTH TO DAIRY—BEEF MALE CALF TO BE SOLD			40.00 €/DOSE
AV. HEIFER MARKET VALUE		SEMEN UNIT PRICE	
AV. CULL COW MARKET VALUE			
AV. COST FOR DISPOSAL OF DEAD-ON-FARM-COW	120.0 €	PROFIT/LOSS FROM PREGNANT HEIFER SALE	-47473.0 €
COWS MORTALITY		TILII EN SALL	
HEIFER FEED COST	3.00 €	PROFIT/LOSS FROM CROSSBREED CALVED AND DAIRY MALE CALF SALE	0.0 €
CALF FEED COST	3.5 €		
AV. REARING COST FROM BIRTH TO FIRST CALVING		REPLACEMENT COST (ON 100L OF MILK)	10.08 €
MILK YIELD		TOTAL STATE ASSET	
TOT. ANNUAL MILK YIELD	2737500 L/ANNO/STALLA	TOTAL SEMEN COST	13050.0 €

TOTAL DAIRY CONV.

TOTAL BEEF

SEMEN UNITS

TOTAL DAIRY SEXED

SEMEN UNITS

SEMEN UNITS

194

413

0

EC APP

AN EASY TOOL TO CALCULATE YOUR FARM REPLACEMENT

CPOST PREGNANCY CHECK)

% STILLBORN MALE CALVES

% STILLBORN FEMALE CALVES

HEIFER REARING LOSS

7%

5%

5%

Dairy heifer replacement calculation

Example 2: combined use of conventional, sexed and beef semen

42

168

TOTAL DAIRY MALE CALVES	40
TOTAL BEEF MALE CALVES	64
TOTAL BEEF FEMALE CALVES	58
ANNUAL DAIRY HEIFERS NEEDED	82
MONTHLY DAIRY HEIFERS NEEDED	7
NR. OF DAIRY Heifers yielded	83
SURSPLUS DAIRY HEIFERS	İ

OUI FUI UKE

AVARAGE DAIRY-BEEF MALE CALVES BODY WEIGHT	50 KG	AV. DAIRY CONVENTIONAL	15.00 €/DOSE
AV. DAIRY MALE CALF MARKET VALUE	1.3 €/KG	SEMEN UNIT PRICE	Fan a fanar
AV. DAIRY-BEEF MALE CALF MARKET VALUE	4.00 €/KG	AV. BEEF SEMEN Unit price	7.00 €/DOSE
DAYS FROM BIRTH TO DAIRY-BEEF MALE CALF TO BE SOLD	40 DAYS	AV. DAIRY SEXED	40.00 €/DOSE
AV. HEIFER MARKET VALUE	1500.0 €	SEMEN UNIT PRICE	
AV. CULL COW MARKET VALUE	600.0 €		
AV. COST FOR DISPOSAL OF DEAD-ON-FARM-COW	120.0 €	PROFIT/LOSS FROM PREGNANT HEIFER SALE	–1637.0 €
COWS MORTALITY	5%	PROFIT/LOSS FROM CROSSBREED CALVED AND DAIRY MALE CALF SALE	
HEIFER FEED COST	3.00 €		_{00€} ~ 2 € less
CALF FEED COST	3.5 €		
AV. REARING COST FROM BIRTH TO FIRST CALVING	3137.0 €	REPLACEMENT COST (ON 100L OF MILK)	8.4 €
MILK YIELD	30 L/DAY		The same of
TOT. ANNUAL MILK YIELD	2737500 L/YEAR/STABLE	TOTAL SEMEN COST	13151.0 €

Conclusions

- Yielding more heifers than needed is not the most profitable strategy for farmers (given the current Italian market conditions).
- Combining beef and sexed semen to reach heifer balance close to zero, decreased the replacement cost.
- The tool will be implemented into ANAFIBJ online mating program to provide farmers an approach to identify the best replacement strategy.

Thank you for your attention!

Ferrari Valentina

valentinaferrari@anafi.it

www.anafibj.it

